5 years ago

An ELISA method to estimate the mono ADP-ribosyltransferase activities: e.g in pertussis toxin and vaccines

ADP-ribosyltransferase activities have been observed in many prokaryotic and eukaryotic species and viruses and are involved in many cellular processes, including cell signalling, DNA repair, gene regulation and apoptosis. In a number of bacterial toxins, mono ADP-ribosyltransferase is the main cause of host cell cytotoxicity. Several approaches have been used to analyse this biological system from measuring its enzyme products to its functions. By using a mono ADP-ribose binding protein we have now developed an ELISA method to estimate native pertussis toxin mono ADP-ribosyltransferase activity and its residual activities in pertussis vaccines as an example. This new approach is easy to perform and adaptable in most laboratories. In theory, this assay system is also very versatile and could measure the enzyme activity in other bacteria such as Cholera, Clostridium, E. coli, Diphtheria, Pertussis, Pseudomonas, Salmonella and Staphylococcus by just switching to their respective peptide substrates. Furthermore, this mono ADP-ribose binding protein could also be used for staining mono ADP-ribosyl products resolved on gels or membranes.

Publisher URL: www.sciencedirect.com/science

DOI: S0003269717304189

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.