4 years ago

Thermally Induced Oxidation of [FeII(tacn)2](OTf)2 (tacn = 1,4,7-triazacyclononane)

Brian Shay, Richard Staples, Jia Li, Debra Preston, Amitiva Adhikary, Michael Sevilla, Atanu Banerjee, Reza Loloee, Ferman Chavez
We previously reported the spin-crossover (SC) properties of [FeII(tacn)2](OTf)2 (1) (tacn = 1,4,7-triazacyclononane) [Eur. J. Inorg. Chem. 2013, 2115]. Upon heating under dynamic vacuum, 1 undergoes oxidation to generate a low spin iron(III) complex. The oxidation of the iron center was found to be facilitated by initial oxidation of the ligand via loss of an H atom. The resulting complex was hypothesized to have the formulation [FeIII(tacn)(tacn-H)](OTf)2 (2) where tacn-H is N-deprotonated tacn. The formulation was confirmed by ESI-MS. The powder EPR spectrum of the oxidized product at 77 K reveals the formation of a low-spin iron(III) species with rhombic spectrum (g = 1.98, 2.10, 2.19). We have indirectly detected H2 formation during the heating of 1 by reacting the headspace with HgO. Formation of water (1HNMR in anhydrous d6-DMSO) and elemental mercury were observed. To further support this claim, we independently synthesized [FeIII(tacn)2](OTf)3 (3) and treated it with one equiv base yielding 2. The structures of 3 was characterized by X-ray crystallography. Compound 2 also exhibits a low spin iron(III) rhombic signal (g = 1.97, 2.11, 2.23) in DMF at 77 K. Variable temperature magnetic susceptibility measurements indicate that 3 undergoes gradual spin increase from 2 to 400 K. DFT studies indicate that the deprotonated nitrogen in 2 forms a bond to iron(III) exhibiting double bond character (Fe-N, 1.807 Å).

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/ejic.201701190

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.