5 years ago

Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electromechanical Sensors

Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electromechanical Sensors
Seoung-Ki Lee, Jong-Won Song, Beom Joo Yang, Ki Beom Jeong, Seunghyun Lee, Chae Bin Kim, Bon-Cheol Ku, Chiyoung Park
We herein report a facile, cost-competitive, and scalable method for producing viscoelastic conductors via one-pot melt-blending using polymers and supramolecular gels composed of carbon nanotubes (CNTs), diphenylamine (DP), and benzophenone (BP). When mixed, a non-volatile eutectic liquid (EL) produced by simply blending DP with BP (1:1 molar ratio) enabled not only the gelation of CNTs (EL-CNTs) but also the dissolution of a number of commodity polymers. To make use of these advantages, viscoelastic conductors were produced via one-pot melt-blending the EL and CNTs with a model thermoplastic elastomer, poly(styrene-b-butadiene-b-styrene) (SBS, styrene 30 wt %). The resulting composites displayed an excellent electromechanical sensory along with re-mendable properties. This simple method using cost-competitive EL components is expected to provide an alternative to the use of expensive ionic liquids as well as to facilitate the fabrication of novel composites for various purposes. Sense of gel: A supramolecular, non-volatile eutectic liquid (EL), consisting of diphenylamine and benzophenone, can not only dissolve many commodity polymers but also form bucky gels with CNTs upon grinding. A viscoelastic conductor composed of the EL, CNTs, and polymers was prepared by one-pot melt-blending. The resulting viscoelastic conductor behaves as a highly sensitive, self-healing electromechanical sensor.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/anie.201708111

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.