5 years ago

Size-dependent studies in ferromagnetic nanoparticles dispersed ferroelectric liquid crystal mixtures

Size-dependent studies in ferromagnetic nanoparticles dispersed ferroelectric liquid crystal mixtures
Khushboo, P. Malik, K. K. Raina, P. Sharma

In the present study, ferromagnetic nickel nanoparticles (NiNPs) of size (~20 nm, 40 nm) into ferroelectric liquid crystal (FLC) mixture has been dispersed and investigated. Effect of size of NiNPs on the electro-optic, dielectric and optical properties of FLC mixture have been studied and discussed. A minor improvement in spontaneous polarisation, rotational viscosity and faster response time in NiNPs-FLC samples than pure FLC is noticed. Goldstone mode of relaxation frequency ~100 Hz is detected in all samples and follow a Debye type relaxation behaviour. In addition, it is observed that size of NiNPs does not have any remarkable effect on relaxation frequency and dielectric strength. A single absorption peak at 363, 362 Hz is also noticed in pure FLC and NiNPs-FLC samples.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/02678292.2017.1397211

DOI: 10.1080/02678292.2017.1397211

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.