4 years ago

Kinetic Monte Carlo simulations of the grain-surface back-diffusion effect.

Robin T. Garrod, Eric R. Willis

Back-diffusion is the phenomenon by which random walkers revisit binding sites on a lattice. This phenomenon must occur on interstellar dust particles, slowing down dust-grain reactions, but it is not accounted for by standard rate-equation models. Microscopic kinetic Monte Carlo models have been used to investigate the effect of back-diffusion on reaction rates on interstellar dust grains. Grain morphology, size, and grain-surface coverage were varied and the effects of these variations on the magnitude of the back-diffusion effect were studied for the simple H+H reaction system. This back-diffusion effect is seen to reduce reaction rates by a maximum factor of ~5 for the canonical grain of 10$^6$ binding sites.The resulting data were fit to logarithmic functions that can be used to reproduce the effects of back-diffusion in rate-equation models.

Publisher URL: http://arxiv.org/abs/1711.03171

DOI: arXiv:1711.03171v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.