5 years ago

Exchange mechanism for electron paramagnetic resonance of individual adatoms.

J. Fernandez-Rossier, A. Ferron, J. L. Lado

We propose a new universal mechanism that makes it possible to drive an individual atomic spin using a spin polarized scanning tunnel microscope (STM) with an oscillating electric signal. We show that the combination of the distance dependent exchange with the magnetic tip and the electrically driven mechanical oscillation of the surface spins permits to control their quantum state. Based on a combination of density functional theory and multiplet calculations, we show that the proposed mechanism is essential to account for the recently observed electrically driven paramagnetic spin resonance (ESR) of an individual Fe atom on a MgO/Ag(100) surface. Our findings set the foundation to deploy the ESR-STM quantum sensing technique to a much broader class of systems.

Publisher URL: http://arxiv.org/abs/1611.01110

DOI: arXiv:1611.01110v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.