A Hamilton-Jacobi point of view on mean-field Gibbs-non-Gibbs transitions.
We study the loss, recovery, and preservation of differentiability of time-dependent large deviation rate functions. This study is motivated by mean-field Gibbs-non-Gibbs transitions. The gradient of the rate-function evolves according to a Hamiltonian flow. This Hamiltonian flow is used to analyze the regularity of the time dependent rate function, both for Glauber dynamics for the Curie-Weiss model and Brownian dynamics in a potential. We hereby create a unifying framework for the treatment of mean-field Gibbs-non-Gibbs transitions, based on Hamiltonian dynamics and viscosity solutions of Hamilton-Jacobi equations.
Publisher URL: http://arxiv.org/abs/1711.03489
DOI: arXiv:1711.03489v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.