5 years ago

Symmetric Fermion Mass Generation as Deconfined Quantum Criticality.

Yi-Zhuang You, Cenke Xu, Ashvin Vishwanath, Yin-Chen He

Massless 2+1D Dirac fermions arise in a variety of systems from graphene to the surfaces of topological insulators, where generating a mass is typically associated with breaking a symmetry. However, with strong interactions, a symmetric gapped phase can arise for multiples of eight Dirac fermions. A continuous quantum phase transition from the massless Dirac phase to this massive phase, which we term Symmetric Mass Generation (SMG), is necessarily beyond the Landau paradigm and is hard to describe even at the conceptual level. Nevertheless, such transition has been consistently observed in several numerical studies recently. Here, we propose a theory for the SMG transition which is reminiscent of deconfined criticality and involves emergent non-Abelian gauge fields coupled both to Dirac fermions and to critical Higgs bosons. We motivate the theory using an explicit parton construction and discuss predictions for numerics. Additionally, we show that the fermion Green's function is expected to undergo a zero to pole transition across the critical point.

Publisher URL: http://arxiv.org/abs/1705.09313

DOI: arXiv:1705.09313v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.