5 years ago

Equivalence Principle in Chameleon Models.

Lucila Kraiselburd, Daniel Sudarsky, Marcelo Salgado, Héctor Vucetich, Susana J. Landau

Most theories that predict time and/or space variation of fundamental constants also predict violations of the Weak Equivalence Principle. In 2004 Khoury and Weltman proposed the so called chameleon field arguing that it could help avoiding experimental bounds on the WEP while having a non-trivial cosmological impact. In this paper we revisit the extent to which these expectations continue to hold as we enter the regime of high precision tests. The basis of the study is the development of a new method for computing the force between two massive bodies induced by the chameleon field which takes into account the influence on the field by both, the large and the test bodies. We confirm that in the thin shell regime the force does depend non-trivially on the test body\' s composition, even when the chameleon coupling constants are universal. We also propose a simple criterion based on energy minimization, that we use to determine which of the approximations used in computing the scalar field in a two body problem is better in each specific regime. As an application of our analysis we then compare the resulting differential acceleration of two test bodies with the corresponding bounds obtained from E\"otv\"os type experiments. We consider two setups: 1) an Earth based experiment where the test bodies are made of Be and Al; 2) the Lunar Laser Ranging experiment. We find that for some choices of the free parameters of the chameleon model the predictions of the E\"otv\"os parameter are larger than some of the previous estimates. As a consequence, we put new constrains on these free parameters. An important result of our analysis is that our approach leads to new constraints on the parameter space of the chameleon models.

Publisher URL: http://arxiv.org/abs/1511.06307

DOI: arXiv:1511.06307v4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.