4 years ago

$R^2$ Dark Energy in the Laboratory.

Philippe Brax, Pierre Vanhove, Patrick Valageas

We analyse the role, on large cosmological scales and laboratory experiments, of the leading curvature squared contributions to the low energy effective action of gravity. We argue for a natural relationship $c_0\lambda^2\simeq 1$ at low-energy between the ${\cal R}^2$ coefficients $c_0$ of the Ricci scalar squared term in this expansion and the dark energy scale $\Lambda=(\lambda M_{\rm Pl})^4$ in four dimensional Planck mass units. We show how the compatibility between the acceleration of the expansion rate of the Universe, local tests of gravity and the quantum stability of the model all converge to select such a relationship up to a coefficient which should be determined experimentally. When embedding this low energy theory of gravity into candidates for its ultraviolet completion, we find that the proposed relationship is guaranteed in string-inspired supergravity models with modulus stabilisation and supersymmetry breaking leading to de Sitter compactifications. In this case, the scalar degree of freedom of ${\cal R}^2$ gravity is associated to a volume modulus. Once written in terms of a scalar-tensor theory, the effective theory corresponds to a massive scalar field coupled with the universal strength $\beta=1/\sqrt{6}$ to the matter stress-energy tensor. When the relationship $c_0\lambda^2\simeq 1$ is realised we find that on astrophysical scales and in cosmology the scalar field is ultralocal and therefore no effect arises on such large scales. On the other hand, the scalar field mass is tightly constrained by the non-observation of fifth forces in torsion pendulum experiments such as E\"ot-Wash. It turns out that the observation of the dark energy scale in cosmology implies that the scalar field could be detectable by fifth force experiments in the near future.

Publisher URL: http://arxiv.org/abs/1711.03356

DOI: arXiv:1711.03356v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.