5 years ago

An expedient synthesis of N-(1-(5-mercapto-4-((substituted benzylidene)amino)-4H-1,2,4-triazol-3-yl)-2-phenylethyl)benzamides as jack bean urease inhibitors and free radical scavengers: Kinetic mechanism and molecular docking studies

An expedient synthesis of N-(1-(5-mercapto-4-((substituted benzylidene)amino)-4H-1,2,4-triazol-3-yl)-2-phenylethyl)benzamides as jack bean urease inhibitors and free radical scavengers: Kinetic mechanism and molecular docking studies
Sung-Yum Seo, Pervaiz Ali Channar, Qamar Abbas, Fayaz Ali Larik, Mubashir Hassan, Aamer Saeed, Mohammad Haseeb Ashraf, Haroon Mehfooz
In this study, some new azomethine-triazole hybrids 5a–5l derived from N-benzoyl-L-phenylalanine were synthesized and characterized. The synthesized compounds showed first-rate, urease inhibition, and compounds 5c and 5e were found to be most effective inhibitors with 0.0137 ± 0.00082 μm and 0.0183 ± 0.00068 μm, respectively (thiourea 15.151 ± 1.27 μm). The kinetic mechanism of urease inhibition revealed the compounds 5c and 5e to be non-competitive inhibitors, whereas compounds 5d and 5j were found to be of mixed-type inhibitors. Docking studies also indicated better interaction patterns with urease enzyme. The results of enzyme inhibition, kinetic mechanism and molecular docking suggest that these compounds can serve as lead compounds in the design of more effective urease inhibitors. Synthesis of N-(1-(5-mercapto-4-((substituted benzylidene) amino)-4H-1, 2, 4-triazol-3-yl)-2-phenylethyl) benzamides as jack bean urease and free radical scavenger inhibitors. Kinetic mechanism revealed that most potent derivative 5j inhibits enzyme by non-competitive mechanism. The binding affinity of the molecules was evaluated using molecular docking studies. Based on the results of enzyme inhibition activities and molecular docking, it was inferred that these molecules can serve as template for the drug designing and discovery. Further structural modifications to most potent derivatives can lead to the designing of efficient enzyme inhibitors.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/cbdd.12998

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.