Holography and criticality in matchgate tensor networks.
The AdS/CFT correspondence conjectures a holographic duality between gravity in a bulk space and a critical quantum field theory on its boundary. Tensor networks have come to provide toy models to understand such bulk-boundary correspondences, shedding light on connections between geometry and entanglement. We introduce a versatile and efficient framework for studying tensor networks, extending previous tools for Gaussian matchgate tensors in 1+1 dimensions. Using regular bulk tilings, we show that the critical Ising theory can be realized on the boundary of both flat and hyperbolic bulk lattices. Within our framework, we also produce translation-invariant critical states by an efficiently contractible network dual to the multi-scale entanglement renormalization ansatz. Furthermore, we explore the correlation structure of states emerging in holographic quantum error correction. We hope that our work will stimulate a comprehensive study of tensor-network models capturing bulk-boundary correspondences.
Publisher URL: http://arxiv.org/abs/1711.03109
DOI: arXiv:1711.03109v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.