5 years ago

Low-energy effects in a higher-derivative gravity model with real and complex massive poles.

Ilya L. Shapiro, Breno L. Giacchini, Antonio Accioly

The most simple superrenormalizable model of quantum gravity is based on the general local covariant six-derivative action. In addition to graviton such a theory has massive scalar and tensor modes. It was shown recently that in the case when the massive poles emerge in complex conjugate pairs, the theory has also unitary $S$-matrix and hence can be seen as a candidate to be a consistent quantum gravity theory. In the present work we construct the modified Newton potential and explore the gravitational light bending in a general six-derivative theory, including the most interesting case of complex massive poles. In the case of the light deflection the results are obtained within classical and semiclassical approaches.

Publisher URL: http://arxiv.org/abs/1610.05260

DOI: arXiv:1610.05260v4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.