On integral representations and asymptotics of some hypergeometric functions in two variables.
The leading asymptotic behaviour of the Humbert functions $\Phi_2$, $\Phi_3$, $\Xi_2$ of two variables is found, when the absolute values of the two independent variables become simultaneosly large. New integral representations of these functions are given. These are re-expressed as inverse Laplace transformations and the asymptotics is then found from a Tauberian theorem. Some integrals of the Humbert functions are also analysed.
Publisher URL: http://arxiv.org/abs/1707.06275
DOI: arXiv:1707.06275v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.