5 years ago

An energy-based stability criterion for solitary traveling waves in Hamiltonian lattices.

Panayotis G. Kevrekidis, Jesús Cuevas--Maraver, Anna Vainchtein, Haitao Xu

In this work, we revisit a criterion, originally proposed in [Nonlinearity {\bf 17}, 207 (2004)], for the stability of solitary traveling waves in Hamiltonian, infinite-dimensional lattice dynamical systems. We discuss the implications of this criterion from the point of view of stability theory, both at the level of the spectral analysis of the advance-delay differential equations in the co-traveling frame, as well as at that of the Floquet problem arising when considering the traveling wave as a periodic orbit modulo a shift. We establish the correspondence of these perspectives for the pertinent eigenvalue and Floquet multiplier and provide explicit expressions for their dependence on the velocity of the traveling wave in the vicinity of the critical point. Numerical results are used to corroborate the relevant predictions in two different models, where the stability may change twice. Some extensions, generalizations and future directions of this investigation are also discussed.

Publisher URL: http://arxiv.org/abs/1711.03330

DOI: arXiv:1711.03330v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.