5 years ago

Exploring quantum chaos with a single nuclear spin.

Gerard J. Milburn, Hannes Firgau, Catherine Holmes, Vincent Mourik, Andrea Morello, Jeffrey C. McCallum, Jarryd J. Pla, Serwan Asaad

Among the many controversial aspects of the quantum / classical boundary, the emergence of chaos remains amongst the least experimentally verified. In particular, the time-resolved observation of quantum chaotic dynamics, and its interplay with quantum measurement, is largely unexplored outside experiments in atomic ensembles. We present here a realistic proposal to construct a chaotic driven top from the nuclear spin of a single donor atom in silicon, in the presence of nuclear quadrupole interaction. This system is exquisitely measurable and controllable, and possesses extremely long intrinsic quantum coherence times, allowing for the observation of subtle dynamical behavior over extended periods. We show that signatures of chaos are expected to arise for experimentally realizable parameters of the system, allowing the study of the relation between quantum decoherence and classical chaos, and the observation of dynamical tunneling.

Publisher URL: http://arxiv.org/abs/1703.04852

DOI: arXiv:1703.04852v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.