4 years ago

Energetic-particle-modified global Alfv\'{e}n eigenmodes.

J.B. Lestz, E.V. Belova, N.N. Gorelenkov

Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfv\'{e}n eigenmodes (GAE) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function -- the normalized injection velocity $v_0/v_A$ and central pitch -- are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on $v_0/v_A$. This unexpected result is present for both counter-propagating GAEs, which are routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in mode structure could indicate the existence of a new energetic particle mode, referred to here as an energetic-particle-modified GAE (EP-GAE). Additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.

Publisher URL: http://arxiv.org/abs/1708.00498

DOI: arXiv:1708.00498v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.