5 years ago

Negative magnetic eddy diffusivity due to oscillatory $\alpha$-effect.

Roman Chertovskih, Alexander Andrievsky, Vladislav Zheligovsky

We study large-scale kinematic dynamo action of steady mirror-antisymmetric flows of incompressible fluid, that involve small spatial scales only, by asymptotic methods of the multiscale stability theory. It turns out that, due to the magnetic $\alpha$-effect in such flows, mean field experiences harmonic oscillations in time on the scale $T_1=\varepsilon t$ without growth or decay. Here $\varepsilon$ is the spatial scale ratio and $t$ is the fast time of the order of the flow turnover time. The interaction of the accompanying fluctuating magnetic field with the flow gives rise to an anisotropic magnetic eddy diffusivity, whose dependence on the direction of the large-scale wave vector generically exhibits a singular behaviour, and thus to negative eddy diffusivity for whichever molecular magnetic diffusivity. Consequently, such flows always act as kinematic dynamos on the time scale $T_2=\varepsilon^2t$. We investigate numerically this dynamo mechanism for two sample flows.

Publisher URL: http://arxiv.org/abs/1711.02390

DOI: arXiv:1711.02390v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.