Arctic Curves in path models from the Tangent Method.
Recently, Colomo and Sportiello introduced a powerful method, known as the \emph{Tangent Method}, for computing the arctic curve in statistical models which have a (non- or weakly-) intersecting lattice path formulation. We apply the Tangent Method to compute arctic curves in various models: the domino tiling of the Aztec diamond for which we recover the celebrated arctic circle; a model of Dyck paths equivalent to the rhombus tiling of a half-hexagon for which we find an arctic half-ellipse; another rhombus tiling model with an arctic parabola; the vertically symmetric alternating sign matrices, where we find the same arctic curve as for unconstrained alternating sign matrices. The latter case involves lattice paths that are non-intersecting but that are allowed to have osculating contact points, for which the Tangent Method was argued to still apply. For each problem we estimate the large size asymptotics of a certain one-point function using LU decomposition of the corresponding Gessel-Viennot matrices, and a reformulation of the result amenable to asymptotic analysis.
Publisher URL: http://arxiv.org/abs/1711.03182
DOI: arXiv:1711.03182v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.