5 years ago

Experimental studies of thorium ions implantation from pulse laser plasma into thin silicon oxide layers.

D. Mamedov, E.V. Tkalya, P.V. Borisyuk, V.P. Yakovlev, Yu.Yu. Lebedinskii, S.Zh. Karazhanov, E. Strugovshchikov, A. Pishtshev, O.S. Vasilyev, E.V. Chubunova

We report the results of experimental studies related to implantation of thorium ions into thin silicon dioxide by pulsed plasma fluxes expansion. Thorium ions were generated by laser ablation from a metal target, and the ionic component of the laser plasma was accelerated in an electric field created by the potential difference (5, 10 and 15 kV) between the ablated target and SiO2/Si(001) sample. Laser ablation system installed inside the vacuum chamber of the electron spectrometer was equipped with YAG:Nd3+ laser having the pulse energy of 100 mJ and time duration of 15 ns in the Q-switched regime. Depth profile of thorium atoms implanted into the 10 nm thick subsurface areas together with their chemical state as well as the band gap of the modified silicon oxide at different conditions of implantation processes were studied by means of X-ray photoelectron spectroscopy (XPS) and Reflected Electron Energy Loss Spectroscopy (REELS) methods. Analysis of chemical composition showed that the modified silicon oxide film contains complex thorium silicates. Depending on local concentration of thorium atoms, the experimentally established band gaps were located in the range of 6.0 - 9.0 eV. Theoretical studies of optical properties of the SiO2 and ThO2 crystalline systems have been performed by ab initio calculations within hybrid functional. Optical properties of the SiO2/ThO2 composite were interpreted on the basis of Bruggeman effective medium approximation. A quantitative assessment of the yield of isomeric nuclei in "hot" laser plasma at the early stages of expansion has been performed. The estimates made with experimental results demonstrated that the laser implantation of thorium ions into the SiO2 matrix can be useful for further research of low-lying isomeric transitions in 229Th isotope with energy of 7.8(0.5) eV.

Publisher URL: http://arxiv.org/abs/1711.03378

DOI: arXiv:1711.03378v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.