4 years ago

Maximum Caliber: a general variational principle for dynamical systems.

Steve Pressé, Purushottam D. Dixit, Corey Weistuch, Ken A. Dill, Kingshuk Ghosh, Jason Wagoner

We review here {\it Maximum Caliber} (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of {\it Maximum Entropy} (Max Ent) is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of Non-Equilibrium Statistical Physics -- such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's Minimum Entropy Production -- are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give recent examples of MaxCal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle, and some limitations.

Publisher URL: http://arxiv.org/abs/1711.03450

DOI: arXiv:1711.03450v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.