4 years ago

Template-Free Hierarchical Self-Assembly of Iron Diselenide Nanoparticles into Mesoscale Hedgehogs

Template-Free Hierarchical Self-Assembly of Iron Diselenide Nanoparticles into Mesoscale Hedgehogs
Petr Král, Chuanlai Xu, Dawei Deng, Nicholas A. Kotov, Soumyo Sen, Changlong Hao
The ability of semiconductor nanoparticles (NPs) to self-assemble has been known for several decades. However, the limits of the geometrical and functional complexity for the self-assembled nanostructures made from simple often polydispersed NPs are still continuing to amaze researchers. We report here the self-assembly of primary ∼2–4 nm FeSe2 NPs with puck-like shapes into either (a) monocrystalline nanosheets ∼5.5 nm thick and ∼1000 nm in lateral dimensions or (b) mesoscale hedgehogs ∼550 nm in diameter with spikes of ∼250 nm in length, and ∼10–15 nm in diameter, the path of the assembly is determined by the concentration of dodecanethiol (DT) in the reaction media. The nanosheets represent the constitutive part of hedgehogs. They are rolled into scrolls and assembled around a single core with distinct radial orientation forming nanoscale “needles” approximately doubling its fractal dimension of these objects. The core is assembled from primary NPs and nanoribbons. The size distribution of the mesoscale hedgehogs can be as low as 3.8%, indicating a self-limited mechanism of the assembly. Molecular dynamics simulation indicates that the primary FeSe2 particles have mobile edge atoms and asymmetric basal surfaces. The top-bottom asymmetry of the puck-like NPs originates from the Fe-rich/Se-rich stripes on the (011) surface of the orthorhombic FeSe2 crystal lattice, displaying 2.7 nm periodicity that is comparable to the lateral size of the primary NPs. As the concentration of DT increases, the NPs bind to additional metal sites, which increases the chemical and topographic asymmetry and switches the assembly pathways from nanosheets to hedgehogs. These results demonstrate that the self-assembly of NPs with non-biological surface ligands and without any biological templates results in morphogenesis of inorganic superstructures with complexity comparable to that of biological assemblies, for instance mimivirus. The semiconductor nature of FeSe2 hedgehogs enables their utilizations in catalysis, drug delivery, optics, and energy storage.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b07838

DOI: 10.1021/jacs.7b07838

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.