5 years ago

An Automated Image Analysis Method for Segmenting Fluorescent Bacteria in Three Dimensions

An Automated Image Analysis Method for Segmenting Fluorescent Bacteria in Three Dimensions
Shriram Chennakesavalu, Eric L. McLean, Jingyi Fei, Matthew A. Reyer
Single-cell fluorescence imaging is a powerful technique for studying inherently heterogeneous biological processes. To correlate a genotype or phenotype to a specific cell, images containing a population of cells must first be properly segmented. However, a proper segmentation with minimal user input becomes challenging when cells are clustered or overlapping in three dimensions. We introduce a new analysis package, Seg-3D, for the segmentation of bacterial cells in three-dimensional (3D) images, based on local thresholding, shape analysis, concavity-based cluster splitting, and morphology-based 3D reconstruction. The reconstructed cell volumes allow us to directly quantify the fluorescent signals from biomolecules of interest within individual cells. We demonstrate the application of this analysis package in 3D segmentation of individual bacterial pathogens invading host cells. We believe Seg-3D can be an efficient and simple program that can be used to analyze a wide variety of single-cell images, especially for biological systems involving random 3D orientation and clustering behavior, such as bacterial infection or colonization.

Publisher URL: http://dx.doi.org/10.1021/acs.biochem.7b00839

DOI: 10.1021/acs.biochem.7b00839

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.