5 years ago

Role of Crystal Symmetry in the Reversibility of Stacking-Sequence Changes in Layered Intercalation Electrodes

Role of Crystal Symmetry in the Reversibility of Stacking-Sequence Changes in Layered Intercalation Electrodes
Anton Van der Ven, Y. Shirley Meng, Maxwell D. Radin, Judith Alvarado
The performance of many technologies, such as Li- and Na-ion batteries as well as some two-dimensional (2D) electronics, is dependent upon the reversibility of stacking-sequence-change phase transformations. However, the mechanisms by which such transformations lead to degradation are not well understood. This study explores lattice-invariant shear as a source of irreversibility in stacking-sequence changes, and through an analysis of crystal symmetry shows that common electrode materials (graphitic carbon, layered oxides, and layered sulfides) are generally susceptible to lattice-invariant shear. The resulting irreversible changes to microstructure upon cycling (“electrochemical creep”) could contribute to the degradation of the electrode and capacity fade.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b03989

DOI: 10.1021/acs.nanolett.7b03989

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.