5 years ago

Impact of Element Doping on Photoexcited Electron Dynamics in CdS Nanocrystals

Impact of Element Doping on Photoexcited Electron Dynamics in CdS Nanocrystals
Qun Zhang, Lei Zhang, Yi Luo
Element doping plays a key role in achieving desired properties of semiconductor nanocrystals. In the energy-state landscape the doping-induced localized impurity states (LIS) can bring on significant modification of photoelectrochemical effects. It is difficult to retrieve information regarding the doping-induced LIS. Here we report on such information gleaned on a prototypical system of CdS nanocrystals slightly doped with In3+, through joint observations from photoluminescence (PL) and ultrafast transient absorption (TA) spectroscopy. The nonradiative nature of the In-doping induced LIS is revealed by PL. The TA observations, with a set of control experiments, enable us to capture a picture of the photoexcited electron dynamics and unravel the photoexcited electron reservoir (PEER) effect associated with the In-doping induced band gap LIS. This work establishes a fundamental, mechanistic understanding of the significant impact of element doping on the photoexcited electron dynamics in this model system, offering useful inputs for relevant material design and applications.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b02449

DOI: 10.1021/acs.jpclett.7b02449

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.