4 years ago

Highly Efficient Dual Active Palladium Nanonetwork Electrocatalyst for Ethanol Oxidation and Hydrogen Evolution

Highly Efficient Dual Active Palladium Nanonetwork Electrocatalyst for Ethanol Oxidation and Hydrogen Evolution
Mohammad Shamsuddin Ahmed, Seungwon Jeon, Halima Begum
Tunable palladium nanonetwork (PdNN) has been developed for catalyzing ethanol oxidation reaction (EOR) and hydrogen evolution reaction (HER) in alkaline electrolyte. 3D PdNN is regarded as a dual active electrocatalyst for both EOR and HER for energy conversion application. The PdNN has been synthesized by the simple chemical route with the assistance of zinc precursor and a surfactant (i.e., cetyltrimethylammonium bromide, CTAB). The thickness of the network can be tuned by simply adjusting the concentration of CTAB. Both EOR and HER have been performed in an alkaline electrolyte, and characterized by different voltammetric methods. The 3D PdNN has shown 2.2-fold higher electrochemical surface area than the commercially available Pt/C including other tested catalysts with minimal Pd loading. As a result, it provides a higher density of EOR and HER active sites and facilitated the electron transport. For example, it shows 2.6-fold higher mass activity with significantly lower CO2 production for EOR and the similar overpotential (110 mV @ 10 mA cm–2) for HER compared to Pt/C with better reaction kinetics for both reactions. Thus, the PdNN is proved as an efficient electrocatalyst with better electrocatalytic activity and stability than state-of-the-art Pt/C for both EOR and HER because of the crystalline, monodispersed, and support-free porous nanonetwork.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09855

DOI: 10.1021/acsami.7b09855

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.