5 years ago

Chemical Imaging of Nanoscale Interfacial Inhomogeneity in LiFePO4 Composite Electrodes from a Cycled Large-Format Battery

Chemical Imaging of Nanoscale Interfacial Inhomogeneity in LiFePO4 Composite Electrodes from a Cycled Large-Format Battery
Mi Lu, Yongfeng Hu, Jian Wang, Jigang Zhou
The nanoscale interfacial inhomogeneity in a cycled large-format LiFePO4 (LFP) composite electrode has been studied by X-ray photoemission electron microscopy at single particle spatial resolution with a probe depth of ∼5 nm. The loss of active lithium in cycled LFP causes the coexsitence of fully delithiated LFP (FePO4) and partially delithiated LFP (Li0.6FePO4 or Li0.8FePO4) as a function of the extent of lithium loss. The distribution of various lithium loss phases along with local agglomeration of LFP and degradation of binder and carbon black are correlatively visualized. This is the first experimental exploration of chemical interplay between components in the composite electrode from a large-format battery, and implications on the LFP degradation in this battery are discussed.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b11427

DOI: 10.1021/acsami.7b11427

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.