5 years ago

Quick Activation of Nanoporous Anatase TiO2 as High-Rate and Durable Anode Materials for Sodium-Ion Batteries

Quick Activation of Nanoporous Anatase TiO2 as High-Rate and Durable Anode Materials for Sodium-Ion Batteries
Zhaohua Wang, Ying Bai, Feng Wu, Qiao Ni, Liming Ling, Chuan Wu, Yu Li
To understand the slow capacity activation behavior of anatase TiO2 as a sodium-ion battery anode during cycling, a nanoporous configuration was designed and prepared. On the basis of the comprehension of the Na-ion storage mechanism, the behavior is demonstrated to be related with the gradual formation of amorphous phase resulting from the phase transition during discharge. In addition, the level of phase transition is determined by the discharge rates and cycle numbers, which strongly affects the electrochemical performance of anatase TiO2. Via a quick formation process of the amorphous phase in the initial cycles, the capacity activation is accelerated, and high initial capacity is achieved with no fading after 500 cycles. Particularly, anatase TiO2 displays surprisingly unique properties in the fast charge (even at 20 C, 6.7 A g–1) mode, delivering a 179 mA h g–1 charge capacity. This study is significant for the comprehensive understanding of the controversial sodium storage mechanisms and unclear special behaviors occurring in anatase TiO2, thus greatly contributing to better guidance on the computational studies and experiment technologies for further performance promotion.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b13927

DOI: 10.1021/acsami.7b13927

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.