5 years ago

Photoresponse Enhancement in Monolayer ReS2 Phototransistor Decorated with CdSe–CdS–ZnS Quantum Dots

Photoresponse Enhancement in Monolayer ReS2 Phototransistor Decorated with CdSe–CdS–ZnS Quantum Dots
Jing-Kai Qin, Wen-Zhu Shao, Peng Miao, Zhao-Yuan Sun, Dan-Dan Ren, PingAn Hu, Yang Li, Cheng-Yan Xu, Liang Zhen
ReS2 films are considered as a promising candidate for optoelectronic applications due to their direct band gap character and optical/electrical anisotropy. However, the direct band gap in a narrow spectrum and the low absorption of atomically thin flakes weaken the prospect for light-harvesting applications. Here, we developed an efficient approach to enhance the performance of a ReS2-based phototransistor by coupling CdSe–CdS–ZnS core–shell quantum dots. Under 589 nm laser irradiation, the responsivity of the ReS2 phototransistor decorated with quantum dots could be enhanced by more than 25 times (up to ∼654 A/W) and the rising and recovery time can be also reduced to 3.2 and 2.8 s, respectively. The excellent optoelectronic performance is originated from the coupling effect of quantum dots light absorber and cross-linker ligands 1,2-ethanedithiol. Photoexcited electron–hole pairs in quantum dots can separate and transfer efficiently due to the type-II band alignment and charge exchange process at the interface. Our work shows that the simple hybrid zero- and two-dimensional hybrid system can be employed for photodetection applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b10349

DOI: 10.1021/acsami.7b10349

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.