5 years ago

Aggregation-Driven Controllable Plasmonic Transition of Silica-Coated Gold Nanoparticles with Temperature-Dependent Polymer–Nanoparticle Interactions for Potential Applications in Optoelectronic Devices

Aggregation-Driven Controllable Plasmonic Transition of Silica-Coated Gold Nanoparticles with Temperature-Dependent Polymer–Nanoparticle Interactions for Potential Applications in Optoelectronic Devices
Tae Kyung Lee, Na Kyung Kwon, Sang Kyu Kwak, So Youn Kim
Localized surface plasmon resonance (LSPR) effect relies on the shape, size, and dispersion state of metal nanoparticles and can potentially be employed in many applications such as chemical/biological sensor, optoelectronics, and photocatalyst. While complicated synthetic approaches changing shape and size of nanoparticles can control the intrinsic LSPR effect, here we show that controlling interparticle interactions with silica-coated gold nanoparticles (Au@SiO2 NPs) is a powerful approach, permitting wide range of optical bandwidth of gold nanoparticles with great stability. The interparticle interactions of Au@SiO2 NPs are controlled through concentration-, temperature-, and time-dependent polymer-induced interactions. The polymer-induced interactions modulate the state of particle dispersion, resulting an effective plasmonic shift by more than 200 nm. We further explore the microstructure of particle aggregation and explain mechanisms of plasmonic shift based on the results of small-angle X-ray scattering (SAXS) and discrete dipole approximation (DDA) calculation. We show that an effective control of LSPR behavior is now available through trapped aggregation of Au@SiO2 NPs with temperature variation. We anticipate that the suggested strategy can be employed in many practical applications such as optical bioimaging and optoelectronic devices.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b13123

DOI: 10.1021/acsami.7b13123

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.