5 years ago

Resorcin[4]arene-Based Microporous Metal–Organic Framework as an Efficient Catalyst for CO2 Cycloaddition with Epoxides and Highly Selective Luminescent Sensing of Cr2O72–

Resorcin[4]arene-Based Microporous Metal–Organic Framework as an Efficient Catalyst for CO2 Cycloaddition with Epoxides and Highly Selective Luminescent Sensing of Cr2O72–
Ying-Ying Liu, Jin Yang, Bing-Bing Lu, Jian-Fang Ma, Wei Jiang
A stable microporous anionic metal–organic framework (MOF), [(CH3)2NH2]6[Cd3L(H2O)2]·12H2O (1), has been synthesized via solvothermal assembly of a new resorcin[4]arene-functionalized dodecacarboxylic acid (H12L) and Cd(II) cations. The constructed MOF (1) was characterized by single-crystal X-ray diffraction and other physicochemical analyses. 1 exhibits a fascinating 3D microporous framework structure, in which the free water molecules and the [(CH3)2NH2]+ cations were located. Remarkably, the exposed Lewis acid Cd(II) sites of activated 1 make it an efficient heterogeneous catalyst for the cycloaddition of CO2 with epoxides at 1 and 20 atm. Importantly, the activated samples of 1 can be reused at least five circles with excellent catalytic performance. Moreover, the fluorescence detection of Cr2O72– and Fe3+ was studied by using 1 as a potential luminescent sensor.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b14179

DOI: 10.1021/acsami.7b14179

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.