5 years ago

Band Gap in Magnetite above Verwey Temperature Induced by Symmetry Breaking

Band Gap in Magnetite above Verwey Temperature Induced by Symmetry Breaking
Hongsheng Liu, Cristiana Di Valentin
Magnetite exhibits a famous phase transition, called Verwey transition, at the critical temperature TV of about 120 K. Although numerous efforts have been devoted to the understanding of this interesting transition, up to now, it is still under debate whether a charge ordering and a band gap exist in magnetite above TV. Here, we systematically investigate the charge ordering and the electronic properties of magnetite in its cubic phase using different methods based on density functional theory: DFT+U and hybrid functionals. Our results show that, upon releasing the symmetry constraint on the density but not on the geometry, charge disproportionation (Fe2+/Fe3+) is observed, resulting in a band gap of around 0.2 eV at the Fermi level. This implies that the Verwey transition is probably a semiconductor-to-semiconductor transition and that the conductivity mechanism above TV is small polaron hopping.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b09387

DOI: 10.1021/acs.jpcc.7b09387

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.