5 years ago

Microscale Insight into Oxidation of Single MoS2 Crystals in Air

Microscale Insight into Oxidation of Single MoS2 Crystals in Air
Marcin Pisarek, Robert Szoszkiewicz, Wojciech Leon Spychalski
Because of profound applications of MoS2 crystals in electronics, their microscale oxidation is the subject of substantial interest. We report on oxidation of single MoS2 crystals, which were oxidized within a precision muffle furnace at a series of increasing temperatures up to 500 °C. Using electron dispersion X-ray spectroscopy (EDS) at ambient conditions, we observed an increase of oxide content with increasing heating temperature and obtained an apparent activation energy for the oxidation process of the order of 1 kcal/mol. This value is at least 8 times smaller than an activation energy for surface formation of MoO3 and according to the literature points rather to physisorbed oxygen species. Our Auger electron spectroscopy (AES) results also pointed out toward the physisorbed oxygen, similarly as our further heating studies within elevated relative humidity conditions. The Mo oxide leftovers on the sample were investigated using atomic force microscopy (AFM) and showed dendritic structures. Surface appearance of those dendrites, their fractal dimension between 1.61 and 1.66, and their surface distribution were reminiscent of the diffusion-limited aggregation (DLA) growth. On the basis of analysis of AFM topographs, we hypothesized that the DLA process was controlled by a surface diffusion of the initially physisorbed oxygen, which had to diffuse to reaction centers in order to facilitate the subsequent chemical conversion of MoS2 layers to volatile Mo oxides.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b05405

DOI: 10.1021/acs.jpcc.7b05405

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.