5 years ago

Quantifying Surface Area of Nanosheet Graphene Oxide Colloid Using a Gas-Phase Electrostatic Approach

Quantifying Surface Area of Nanosheet Graphene Oxide Colloid Using a Gas-Phase Electrostatic Approach
Shiuh-Cherng Cheng, Rong-Ming Ho, Jia-Liang Liao, De-Hao Tsai, Wei-Chang Chang, Ta-Chih Hsiao, Wei-Hung Chiang
We demonstrate a new, facile gas-phase electrostatic approach to successfully quantify equivalent surface area of graphene oxide (GO) colloid on a number basis. Mobility diameter (dp,m)-based distribution and the corresponding equivalent surface area (SA) of GO colloids (i.e., with different lateral aspect ratios) were able to be identified by electrospray-differential mobility analysis (ES-DMA) coupled to a condensation particle counter (CPC) and an aerosol surface area analyzer (ASAA). A correlation of SA ∝ dp,m2.0 was established using the ES-DMA-CPC/ASAA, which is consistent with the observation by the 2-dimensional image analysis of size-selected GOs. An ultrafast surface area measurement of GO colloid was achieved via a direct coupling of ES with a combination of ASAA and CPC (i.e., measurement time was 2 min per sample; without size classification). The measured equivalent surface area of GO was ∼202 ± 7 m2 g–1, which is comparable to Brunauer–Emmett–Teller (BET) surface area, ∼240 ± 59 m2 g–1. The gas-phase electrostatic approach proposed in this study has the superior advantages of being fast, requiring no elaborate drying process, and requiring only a very small amount of sample (i.e., <0.01 mg). To the best of our knowledge, this is the first study of using an aerosol-based electrostatic coupling technique to obtain the equivalent surface area of graphene oxide on a number basis with a high precision of measurement.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02969

DOI: 10.1021/acs.analchem.7b02969

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.