4 years ago

Rapid differentiation of Ganoderma species by direct ionization mass spectrometry

Rapid differentiation of Ganoderma species by direct ionization mass spectrometry
In this study, direct ionization mass spectrometry (DI-MS) has been developed for rapid differentiation of Ganoderma (known as Lingzhi in Chinese), a very popular and valuable herbal medicine. Characteristic mass spectra can be generated by DI-MS directly from the raw herbal medicines with the application of a high voltage and solvents. Rapid differentiation of the Ganoderma species that are officially stated in the Chinese pharmacopoeia from easily confused Ganoderma species could be achieved based on this method, as the acquired DI-MS spectra showed that ganoderic acids, the major active components of Ganoderma, could be found only in the official Ganoderma species but not in the confused Ganoderma species. In addition, classification of wild and cultivated Ganoderma and potential differentiation of Ganoderma from different geographical locations could be accomplished based on principal component analysis (PCA) or hierarchical clustering analysis (HCA). The method is rapid, simple and reproducible, and can be further extended to analysis of other herbal medicines.

Publisher URL: www.sciencedirect.com/science

DOI: S0003267017312503

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.