5 years ago

Thermal effects of planar high temperature heat pipes in solid oxide cell stacks operated with internal methane reforming

Thermal effects of planar high temperature heat pipes in solid oxide cell stacks operated with internal methane reforming
The presented paper contributes to developing a new thermal control approach for solid oxide cell (SOC) stacks and systems. Integrating planar liquid metal heat pipes to the interconnector structure of the stacks targets a reduction of internal temperature gradients and an enhanced heat extraction from the stack. This work applies 3-D CFD-modelling to discuss the thermal effects of integrated heat pipes in solid oxide cell stacks, in order to evaluate the possible benefits in terms of temperature gradient reduction and heat removal as well as the resulting benefits for stacks and systems. The stack model set-up is described and its functioning is validated with experimental results from thermal short stack measurements with integrated heat pipe interconnectors. The simulation results are discussed with respect to the possible benefits for full-scale stacks of different cell size, in particular regarding internal heat recycling and the beneficial reduction of air ratios.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317314660

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.