5 years ago

Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets

Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets
Graphene nanosheets (GNS) are the promising nano-reinforcements to fabricate bulk graphene-metal composites due to their excellent mechanical properties and large yield. However, the effective synthesis of such bulk graphene reinforced magnesium (Mg) composites remains challenging because of the poor interfacial bonding and the aggregation of GNS. Here, GNS possessing about 12 at. % residual oxygen (∼7:1 C/O ratio) was synthesized by a thermal reduction method. These residual oxygen in GNS is beneficial to increase the interfacial bonding between GNS and the matrix of α-Mg by MgO nanoparticles, which synthesized through the occurrence of a reaction between the residual oxygen and α-Mg in the composites. TEM analysis reveals that the in-situ synthesized MgO nanoparticles can significantly improve the interfacial bonding between GNS and α-Mg owing to the formation of semi-coherent interface of MgO/α-Mg and the distortion area bonding interface of GNS/MgO. By filling 0.5 wt. % of GNS, the yield strength and elongation of the composite increased by 76.2% and 24.3%, respectively as compared to the matrix alloy. The significant improvement in mechanical properties of the composites is mainly due to the grain refinement, strong interfacial bonding and dislocation strengthening.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317310916

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.