5 years ago

Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing

Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing
Since the last decade, piezoelectric polymer nanofibers have been of great interest in the stimulation of cell growth and proliferation for tissue engineering and wound healing applications. To date, there is no clear understanding of how the piezoelectric properties of piezoelectric materials can be affected by electrospinning parameters and how the piezoelectricity from the electrospun polymer nanofibers produced under optimized electrospinning conditions in vivo would affect cell growth, proliferation and elongation. In this paper, it is shown for the first time how electrospinning parameters, such as solution concentration and collecting distance (from the needle to the rotating mandrel), can affect the piezoelectricity of the poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) nanofibers. Here, the optimized electrospinning conditions for P(VDF-TrFE) nanofibers were achieved and these nanofiber scaffolds (NFSs) were used for implanted energy harvester in SD rats, cell proliferation and cell alignment growth applications. During the process of slightly pulling implanted site of SD rats, the implanted PVDF-TrFE NFSs generated a maximum voltage and current of 6mV and ~ 6µA, respectively. With great cytocompatibility and relatively large piezoelectric effect, fibroblast cells grew and aligned perfectly along the electrospinning direction of P(VDF-TrFE) nanofiber direction and cell proliferation rate was enhanced by 1.6 fold. Thus, electrospun P(VDF-TrFE) NFSs show great promise in tissue engineering and wound healing applications.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517307036

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.