4 years ago

Molecular dynamics simulation of liquid water and ice nanoclusters using a new effective HFD-like model

Molecular dynamics simulation of liquid water and ice nanoclusters using a new effective HFD-like model
Sirous Salemi, Khodanazar Pirfalak, Hamed Akbarzadeh, Mohsen Abbaspour
We have determined a new two-body interaction potential of water by the inversion of viscosity collision integrals of water vapor and fitted to achieve the Hartree–fock dispersion-like (HFD-like) potential function. The calculated two-body potential generates the thermal conductivity, viscosity, and self-diffusion coefficient of water vapor in an excellent accordance with experimental data at wide temperature ranges. We have also used a new many-body potential as a function of temperature and density with the HFD-like pair-potential of water to improve the two-body properties better than the SPC, SPC/E, TIP3P, and TIP4P models. We have also used the new corrected potential to simulate the configurational energy and the melting temperatures of the (H2O)500, (H2O)864, (H2O)2048, and (H2O)6912 ice nanoclusters in good agreement with the previous simulation data using the TIP4P model. The extrapolated melting point at the bulk limit is also in better agreement with the experimental bulk data. The self-diffusion coefficients for the ice nanoclusters also simulated at different temperatures. © 2017 Wiley Periodicals, Inc. We have determined a new two-body interaction potential of water by the inversion of viscosity collision integrals of water vapor and fitted to achieve the Hartree–fock dispersion-like (HFD-like) potential function. We have also used a new many-body potential as a function of temperature and density with the HFD-like pair-potential of water to improve the two-body properties better than the SPC, SPC/E, TIP3P, and TIP4P models. We have also used the new corrected potential to simulate the different properties of the (H2O)500, (H2O)864, (H2O)2048, and (H2O)6912 ice nanoclusters in good agreement with the previous simulation data using the TIP4P model.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcc.25105

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.