5 years ago

A novel ultra-low energy reverse osmosis membrane modified by chitosan with glutaraldehyde crosslinking

A novel ultra-low energy reverse osmosis membrane modified by chitosan with glutaraldehyde crosslinking
Rutvik N. Joshi, Hiren D. Raval, Bhargav B. Mehta
The energy consumption of reverse osmosis (RO) has declined significantly since inception and to further decrease the energy consumption is a challenging task. The present article demonstrates the novel method to increase the membrane productivity and reduce energy consumption of desalination. Thin film composite RO (TFC RO) membrane was subjected to 2000 mg/L sodium hypochlorite for 1 h followed by varying concentrations of chitosan and glutaraldehyde for 1 h each to make a hydrophilic supra-molecular assembly of linear polysaccharide over the polyamide layer. RO membrane exposed to 1000 mg/L chitosan and glutaraldehyde each reported 180% increase in water-flux with about 2.7% increase in divalent ion rejection as compared to virgin TFC RO membrane. The superior performance of the membrane was explained by increased hydrophilicity as shown by decline in contact angle from 46.37° to 29.87°, increase in surface area ratio from atomic force microscope image analysis, and modification in chemical structure of polyamide from attenuated total reflectance Fourier transform infrared spectroscopy. It was further investigated that curing of glutaraldehyde treated membrane resulted in decreased water-flux because of increase in crosslink density. Thus, an ultra-low energy RO process can be developed based on polyamide–chitosan–glutaraldehyde membrane. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 135, 45971.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45971

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.