4 years ago

A human iPS cell myogenic differentiation system permitting high-throughput drug screening.

Jun Otomo, Tomoya Uchimura, Hidetoshi Sakurai, Masae Sato
Muscular dystrophy is a disease characterized by progressive muscle weakness and degeneration. There are currently no available treatments for most muscular diseases, such as muscular dystrophy. Moreover, current therapeutics are focused on improving the quality of life of patients by relieving the symptoms or stress caused by the disease. Although the causative genes for many muscular diseases have been identified, the mechanisms underlying their pathogenesis remain unclear. Patient-derived induced pluripotent stem cells (iPSCs) have become a powerful tool for understanding the pathogenesis of intractable diseases, as well as for phenotype screening, which can serve as the basis for developing new drugs. However, it is necessary to develop an efficient and reproducible myogenic differentiation system. Previously, we reported a tetracycline-inducible MyoD overexpression model of myogenic differentiation using human iPSCs (hiPSCs). However, this model has certain disadvantages that limit its use in various applications, such as a drug screening. In this study, we developed an efficient and reproducible myogenic differentiation system by further modifying our previous protocol. The new protocol achieves efficient differentiation of feeder-free hiPSCs to myogenic cells via small-scale culture in six-well microplates to large-scale culture in 384-well microplates for high-throughput applications.

Publisher URL: http://doi.org/10.1016/j.scr.2017.10.023

DOI: 10.1016/j.scr.2017.10.023

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.