4 years ago

Substrate and mechanotransduction influence SERCA2a localization in human pluripotent stem cell-derived cardiomyocytes affecting functional performance.

Nicola Elvassore, Gordon Keller, Sebastian Martewicz, Susi Zatti, Elena Serena
Physical cues are major determinants of cellular phenotype and evoke physiological and pathological responses on cell structure and function. Cellular models aim to recapitulate basic functional features of their in vivo counterparts or tissues in order to be of use in in vitro disease modeling or drug screening and testing. Understanding how culture systems affect in vitro development of human pluripotent stem cell (hPSC)-derivatives allows optimization of cellular human models and gives insight in the processes involved in their structural organization and function. In this work, we show involvement of the mechanotransduction pathway RhoA/ROCK in the structural reorganization of hPSC-derived cardiomyocytes after adhesion plating. These structural changes have a major impact on the intracellular localization of SERCA2 pumps and concurrent improvement in calcium cycling. The process is triggered by cell interaction with the culture substrate, which mechanical cues drive sarcomeric alignment and SERCA2a spreading and relocalization from a perinuclear to a whole-cell distribution. This structural reorganization is mediated by the mechanical properties of the substrate, as shown by the process failure in hPSC-CMs cultured on soft 4kPa hydrogels as opposed to physiologically stiff 16kPa hydrogels and glass. Finally, pharmacological inhibition of Rho-associated protein kinase (ROCK) by different compounds identifies this specific signaling pathway as a major player in SERCA2 localization and the associated improvement in hPSC-CMs calcium handling ability in vitro.

Publisher URL: http://doi.org/10.1016/j.scr.2017.10.011

DOI: 10.1016/j.scr.2017.10.011

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.