5 years ago

Collective sparse symmetric non-negative matrix factorization for identifying overlapping communities in resting-state brain functional networks

Resting-state functional magnetic resonance imaging (rs-fMRI) provides a valuable tool to study spontaneous brain activity. Using rs-fMRI, researchers have extensively studied the organization of the brain functional network and found several consistent communities consisting of functionally connected but spatially separated brain regions across subjects. However, increasing evidence in many disciplines has shown that most realistic complex networks have overlapping community structure. Only recently has the overlapping community structure drawn increasing interest in the domain of brain network studies. Another issue is that the inter-subject variability is often not directly reflected in the process of community detection at the group level. In this paper, we propose a novel method called collective sparse symmetric non-negative matrix factorization (cssNMF) to address these issues. The cssNMF approach identifies the group-level overlapping communities across subjects and in the meantime preserves the information of individual variation in brain functional network organization. To comprehensively validate cssNMF, a simulated fMRI dataset with ground-truth, a real rs-fMRI dataset with two repeated sessions and another different real rs-fMRI dataset have been used for performance comparison in the experiment. Experimental results show that the proposed cssNMF method accurately and stably identifies group-level overlapping communities across subjects as well as individual differences in network organization with neurophysiologically meaningful interpretations. This research extends our understanding of the common underlying community structures and individual differences in community strengths in brain functional network organization.

Publisher URL: www.sciencedirect.com/science

DOI: S1053811917309102

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.