5 years ago

Local Hemodynamic Forces After Stenting: Implications on Restenosis and Thrombosis.

Christos V Bourantas, Patrick W Serruys, Ryo Torii, Nicolas Foin, Erhan Tenekecioglu, Hui Ying Ang, Jaryl Ng
Local hemodynamic forces are well-known to modulate atherosclerotic evolution, which remains one of the largest cause of death worldwide. Percutaneous coronary interventions with stent implantation restores blood flow to the downstream myocardium and is only limited by stent failure caused by restenosis, stent thrombosis, or neoatherosclerosis. Cumulative evidence has shown that local hemodynamic forces affect restenosis and the platelet activation process, modulating the pathophysiological mechanisms that lead to stent failure. This article first covers the pathophysiological mechanisms through which wall shear stress regulates arterial disease formation/neointima proliferation and the role of shear rate on stent thrombosis. Subsequently, the article reviews the current evidence on (1) the implications of stent design on the local hemodynamic forces, and (2) how stent/scaffold expansion can influence local flow, thereby affecting the risk of adverse events.

Publisher URL: http://doi.org/10.1161/ATVBAHA.117.309728

DOI: 10.1161/ATVBAHA.117.309728

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.