5 years ago

Nanomaterials-based sensitive electrochemiluminescence biosensing

Nanomaterials-based sensitive electrochemiluminescence biosensing
Nanomaterials with wonderful optical, electrical and chemical properties are widely studied in recent decades. In electrochemiluminescence (ECL) sensing area, nanomaterials have also gained crescent attention for their excellent performance based on different functions, such as innovative luminophores, molecule carriers, electrode modification materials and reaction catalysts. Deep insight into ECL biosensing strategies with multifunctional nanomaterials will benefit the design of advanced sensors. Based on this, nanomaterials-based ECL biosensors have shown more promising potentials than traditional ones in analytical applications. After a brief overview of basic ECL principles and sensing approaches, herein, a general description of nanomaterials-based ECL biosensing is presented, especially with emphasis on recently developed ECL resonance energy transfer (ECL-RET) strategy. Finally, future outlooks are considered in building sensitive ECL biosensors.

Publisher URL: www.sciencedirect.com/science

DOI: S1748013216303486

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.