4 years ago

Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces

Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces
Surface modification is crucial for conferring novel functionalities to objects and interfaces. However, simple yet versatile strategies for the surface modification of multiple classes of nanomaterials, including biointerfaces, are rare, as the chemical interactions between the surface modifiers and the substrates need to be tailored on a case-by-case basis. Recently, metal-phenolic networks (MPNs) have emerged as a versatile surface modifier based on the universal adherent properties of phenolic molecules, namely the constituent gallol and catechol groups. Additionally, the dynamic interactions between metal ions and phenolic molecules confer additional functionalities to the MPNs, such as stimuli-responsiveness. Given the interest in MPNs for nanomaterial and biointerface engineering, this review aims to provide an overview of the assembly process, physicochemical properties and applications of MPN coatings.

Publisher URL: www.sciencedirect.com/science

DOI: S1748013216304108

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.