3 years ago

Assessing nanomaterial exposures in aquatic ecotoxicological testing: Framework and case studies based on dispersion and dissolution

Assessing nanomaterial exposures in aquatic ecotoxicological testing: Framework and case studies based on dispersion and dissolution
Anthony J. Bednar, Jessica G. Coleman, Alan J. Kennedy, Ashley Harmon, Stephen A. Diamond, Zachary A. Collier, Robert Moser, Nicolas L. Melby

Abstract

The unique behavior of engineered nanomaterials (ENM) in aqueous media and dynamic changes in particle settling, agglomeration and dissolution rates is a challenge to the consistency, reliability and interpretation of standard aquatic hazard bioassay results. While the toxicological endpoints (e.g., survival, growth, reproduction, etc.) in ecotoxicity bioassays are largely applicable to ENMs, the standard methods as written for dissolved substances are confounded by the dynamic settling, agglomeration and dissolution of particulate ENMs during the bioassay. A testing framework was designed to serve as a starting point to identify approaches for the consistent conduct of aquatic hazard tests that account for the behavior of ENMs in test media and suitable data collection to support representative exposure metrology. The framework was demonstrated by conducting three case studies testing ENMs with functionally distinct characteristics and behaviors. Pretests with a temporal sampling of particle concentration, agglomeration and dissolution were conducted on each ENM in test media. Results indicated that a silver nanoparticle (AgNP) powder was not dispersible, a nano-TiO2 powder was dispersible but unstable, and a polyvinylpyrrolidinone-coated AgNP was relatively stable in test media. Based on these functional results, Ceriodaphnia dubia bioassays were conducted to compare different exposure summary methods (nominal, arithmetic average, geometric average, time-weighted average) for calculating and expressing toxicity endpoints. Results indicated that while arithmetic means were effective for expressing the toxicity of more stable materials, time-weighted averaged concentrations were appropriate for the unstable nano-TiO2.

Publisher URL: http://tandfonline.com/doi/full/10.1080/17435390.2017.1317863

DOI: 10.1080/17435390.2017.1317863

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.