5 years ago

The Effect of Natural or Simulated Altitude Training on High-Intensity Intermittent Running Performance in Team-Sport Athletes: A Meta-Analysis

Will G. Hopkins, Michael J. Hamlin, Catherine A. Lizamore

Abstract

Background

While adaptation to hypoxia at natural or simulated altitude has long been used with endurance athletes, it has only recently gained popularity for team-sport athletes.

Objective

To analyse the effect of hypoxic interventions on high-intensity intermittent running performance in team-sport athletes.

Methods

A systematic literature search of five journal databases was performed. Percent change in performance (distance covered) in the Yo-Yo intermittent recovery test (level 1 and level 2 were used without differentiation) in hypoxic (natural or simulated altitude) and control (sea level or normoxic placebo) groups was meta-analyzed with a mixed model. The modifying effects of study characteristics (type and dose of hypoxic exposure, training duration, post-altitude duration) were estimated with fixed effects, random effects allowed for repeated measurement within studies and residual real differences between studies, and the standard-error weighting factors were derived or imputed via standard deviations of change scores. Effects and their uncertainty were assessed with magnitude-based inference, with a smallest important improvement of 4% estimated via between-athlete standard deviations of performance at baseline.

Results

Ten studies qualified for inclusion, but two were excluded owing to small sample size and risk of publication bias. Hypoxic interventions occurred over a period of 7–28 days, and the range of total hypoxic exposure (in effective altitude-hours) was 4.5–33 km h in the intermittent-hypoxia studies and 180–710 km h in the live-high studies. There were 11 control and 15 experimental study-estimates in the final meta-analysis. Training effects were moderate and very likely beneficial in the control groups at 1 week (20 ± 14%, percent estimate, ± 90% confidence limits) and 4-week post-intervention (25 ± 23%). The intermittent and live-high hypoxic groups experienced additional likely beneficial gains at 1 week (13 ± 16%; 13 ± 15%) and 4-week post-intervention (19 ± 20%; 18 ± 19%). The difference in performance between intermittent and live-high interventions was unclear, as were the dose of hypoxia and inclusion of training in hypoxia.

Conclusions

Hypoxic intervention appears to be a worthwhile training strategy for improvement in high-intensity running performance in team-sport athletes, with enhanced performance over control groups persisting for at least 4 weeks post-intervention. Pending further research on the type of hypoxia, dose of hypoxia and training in hypoxia, coaches have considerable scope for customising hypoxic training methods to best suit their team’s training schedule.

Publisher URL: https://link.springer.com/article/10.1007/s40279-017-0809-9

DOI: 10.1007/s40279-017-0809-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.