5 years ago

Mechanism of action of camphoryl-benzene sulfonamide derivative on glucose uptake in adipose tissue

Fabíola Branco Filippin Monteiro, Veronica Aiceles Pinto, Ricardo José Nunes, Alessandra Mascarello, Cristiane da Fonte Ramos, Marisa Jádna Silva Frederico, Fátima Regina Mena Barreto Silva, Allisson Jhonatan Gomes Castro
The aim of the present study was to investigate the mechanism of action of a sulfonamide derivative on glucose uptake in adipose tissue, as well as to characterize the effects of this compound on intestinal disaccharidases and advanced glycation end-products (AGEs) formation. Camphoryl-benzene sulfonamide (CS) was able to stimulate glucose uptake in isolated adipocytes, adipose tissue and in soleus muscle. The stimulatory effect of the compound (10 μM) on glucose uptake on adipose tissue was blocked by diazoxide, wortmannin, U73122, colchicine, and N-ethylmaleimide. On the other hand, the effects of CS were not blocked by glibenclamide, an inhibitor of the K+-ATP channel, or even by the inhibitor of protein p38 MAPK, SB 203580. In vivo, this compound reduced intestinal disaccharidase activity, while, in vitro, CS reduced the formation of AGEs at 7, 14 and 28 days of incubation. The stimulatory effect of CS on glucose uptake requires the activation of the K+-ATP channel, translocation and fusion of GLUT4 vesicles to the plasma membrane on adipocytes for glucose homeostasis. In addition, the inhibition of disaccharidase activity contributes to the glucose homeostasis in a short-term as well as the remarkable reduction in AGE formation indicates that the CS may prevent of complications of late diabetes. This article is protected by copyright. All rights reserved

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcb.26506

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.