5 years ago

The CXCL12-CXCR4 signaling promotes oocyte maturation by regulating cumulus expansion in sheep

Gonadotropins and growth factors synergistically regulate folliculogenesis and oocyte development. C-X-C motif chemokine 12 (CXCL12) and its receptor CXCR4 are expressed in ovaries of sheep, cattle and other species, however, roles of this multifunctional signal axis in oocyte maturation are not defined. Using sheep as a model, we examined the expression patterns and functions of the CXCL12-CXCR4 axis during oocyte maturation. CXCL12 and CXCR4 mRNA and protein were present in oocytes and granulosa cells. Relative abundance of CXCR4 transcript was controlled by epidermal growth factor (EGF). Transient inhibition of CXCR4 suppressed oocyte nuclear maturation while supplementing recombination CXCL12 significantly increased percent of oocyte undergone metaphase I phase. Inhibition of CXCR4 function decreased cumulus expansion growth rate. Furthermore, granulosa cell migration was impaired and expression of hyaluronan synthase 2 (HAS2) and hyaluronan binding protein tumor necrosis factor-alpha-induced protein 6 (TNFAIP6) were downregulated by CXCR4 inhibition. These findings revealed a novel role of the CXCL12-CXCR4 signaling in oocyte development in sheep.

Publisher URL: www.sciencedirect.com/science

DOI: S0093691X17305241

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.